Face Mask Detector

Face Mask Detector

Face mask detector using OpenCV and TensorFlow in Python. The code and required datasets is been posted on my GitHub profile.

Data Preprocessing

import cv2,os

data_path='dataset'
categories=os.listdir(data_path)
labels=[i for i in range(len(categories))]

label_dict=dict(zip(categories,labels))

print(label_dict)
print(categories)
print(labels)
img_size=100
data=[]
target=[]


for category in categories:
    folder_path=os.path.join(data_path,category)
    img_names=os.listdir(folder_path)

    for img_name in img_names:
        img_path=os.path.join(folder_path,img_name)
        img=cv2.imread(img_path)

        try:
            gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)           
            #Coverting the image into gray scale
            resized=cv2.resize(gray,(img_size,img_size))

            data.append(resized)
            target.append(label_dict[category])


        except Exception as e:
            print('Exception:',e)
import numpy as np

data=np.array(data)/255.0
data=np.reshape(data,(data.shape[0],img_size,img_size,1))
target=np.array(target)

from keras.utils import np_utils

new_target=np_utils.to_categorical(target)

np.save('data',data)
np.save('target',new_target)

Training the CNN

import numpy as np

data=np.load('data.npy')
target=np.load('target.npy')

from keras.models import Sequential
from keras.layers import Dense,Activation,Flatten,Dropout
from keras.layers import Conv2D,MaxPooling2D
from keras.callbacks import ModelCheckpoint

model=Sequential()

model.add(Conv2D(200,(3,3),input_shape=data.shape[1:]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))


model.add(Conv2D(100,(3,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))


model.add(Flatten())
model.add(Dropout(0.5))
#Flatten layer to stack the output convolutions from second convolution layer
model.add(Dense(50,activation='relu'))
#Dense layer of 64 neurons
model.add(Dense(2,activation='softmax'))
#The Final layer with two outputs for two categories

model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])

from sklearn.model_selection import train_test_split

train_data,test_data,train_target,test_target=train_test_split(data,target,test_size=0.1)

checkpoint = ModelCheckpoint('model-{epoch:03d}.model',monitor='val_loss',verbose=0,save_best_only=True,mode='auto')
history=model.fit(train_data,train_target,epochs=20,callbacks=[checkpoint],validation_split=0.2)

from matplotlib import pyplot as plt

plt.plot(history.history['loss'],'r',label='training loss')
plt.plot(history.history['val_loss'],label='validation loss')
plt.xlabel('# epochs')
plt.ylabel('loss')
plt.legend()
plt.show()

plt.plot(history.history['accuracy'],'r',label='training accuracy')
plt.plot(history.history['val_accuracy'],label='validation accuracy')
plt.xlabel('# epochs')
plt.ylabel('loss')
plt.legend()
plt.show()

print(model.evaluate(test_data,test_target)

Detecting Mask

Create a new Notebook and import the model built in the one above using correct path

from keras.models import load_model
import cv2
import numpy as np

model = load_model('model-017.model')

face_clsfr=cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

source=cv2.VideoCapture(0)

labels_dict={0:'MASK',1:'NO MASK'}
color_dict={0:(0,255,0),1:(0,0,255)}

while(True):

    ret,img=source.read()
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    faces=face_clsfr.detectMultiScale(gray,1.3,5)  

    for x,y,w,h in faces:

        face_img=gray[y:y+w,x:x+w]
        resized=cv2.resize(face_img,(100,100))
        normalized=resized/255.0
        reshaped=np.reshape(normalized,(1,100,100,1))
        result=model.predict(reshaped)

        label=np.argmax(result,axis=1)[0]

        cv2.rectangle(img,(x,y),(x+w,y+h),color_dict[label],2)
        cv2.rectangle(img,(x,y-40),(x+w,y),color_dict[label],-1)
        cv2.putText(img, labels_dict[label], (x, y-10),cv2.FONT_HERSHEY_SIMPLEX,0.8,(255,255,255),2)


    cv2.imshow('LIVE',img)
    key=cv2.waitKey(1)

    if(key==27):
        break

cv2.destroyAllWindows()
source.release()